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ABSTRACT 
The paper critically examines, within the framework of linear stability analysis, the thermosolutal convection in a 

heterogeneous visco-elastic (Oldroydian) fluid layer in a porous medium. In the present paper, stationery, oscillatory 

and non-oscillatory convection have been discussed in details. A variational principle is established for the present 

problem. Some Results are discussed numerically also. Also, principle of exchange of stabilities is not valid in the 

present problems.  
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     INTRODUCTION 
The problem of onset of convection in a horizontal layer of fluid heated from below, when buoyancy forces arise from 

density difference due to variation in temperature, was studied by Benard [1] and Rayleigh [2] and the problem, under 

varying assumptions of hydromagnetics, has been treated in detail by Chandrashekhar [3], Investigations of 

thermosolutal convection, when buoyancy forces arise also from variations in solute concentration apart from those 

due to variation in temperature, are motivated by its direct relevance to the hydrodynamics of oceans, as well as its 

interesting complexities, as a double-diffusion phenomenon. Stomell et al. [4] did the pioneering work in this direction. 

Since then the problem of thermohaline or thermosolutal convection has been studied in three basic configurations by 

Stern [5], Veronis [6] and Nield [7] respectively, when the fluid layer heated and soluted from above, heated and 

soluted from below and heated from below and soluted form above. 

 

An experimental demonstration by Toms and Strabridge [8] has revealed that a dilute solution of methyl methacrylate 

in n-butyl acetate agrees well with the theoretical model of Oldroydian visco-elastic fluid proposed by Oldroyd [9]. 

Sharma [10] has studied the instability of the plane interface between two Oldroydian visco-elastic superposed 

conducting fluids in the presence of a uniform magnetic field. 

 

In view of the fact that the study of visco-elastic fluid in a porous medium finds, applications in geophysics and 

chemical technology, a number of researchers have contributed in this direction. However, the thermosolutal 

convection in a heterogeneous visco-elastic (Oldroydian) fluid layer in a porous medium seems, to the best, of our 

knowledge, uninvestigated so far. 

 

In this paper, therefore, we have examined the stability of a visco-elastic [Oldroydian] fluid layer heated and soluted 

from below in a porous medium first studied by Khare and Sahai [11] leading to an adverse temperature gradient and 

a solute concentration gradient with free boundaries when the initial non-homogeneity is present in the fluid. Hence 

it can be looked upon as an extension of thermosolutal convection in a homogenous fluid layer in porous medium 

discussed by Khare and Sahai. 

 

CONSTITUTIVE EQUATIONS AND THE EQUATIONS OF MOTION 
Let  Tij ij, eij ij, p, qi 0, T and C denote respectively the total stress tensor, shear stress tensor, rate of strain 

tensor, Kronecker delta, scalar pressure, velocity vector of the fluid, viscosity, stress relaxation time, strain retardation 

time, temperature field and concentration field. Then the Oldroydian visco-elastic fluid is described by the constitutive 

equations 
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q is the total derivative being the sum of local and convective derivatives. 

Let us consider a horizontal layer of saturated porous medium of thickness d between two free-boundaries z = 0 and 

z = d, z-axis being vertically upward. Let the interstitial fluid (fluid in the porous medium) be visco-elastic, 

0f(z), where 

f(z) is a monotonic function of z with f(0) = 1 and is such that
df

dz
is constant. The layer is infinite in horizontal 

directions and is heated and soluted from below leading to an adverse temperature gradient 
0 1(T T )

d


  and a 

uniform solutal gradient 
0 1(S S )

,
d


  where T0 and T1 are the constant temperatures of the lower and upper 

boundaries with T0 > T1 and also S0 and S1 are the constant solute concentrations of the lower and upper surfaces with 

S0 > S1. The effective density is the superposition of inhomogeneity described by 

 (a) 0f(z) 

and (b) 0 0 – T) – 0 – S)] 

which is caused by temperature and solute gradients. This leads to the effective density 

              0 0 0[f(z) (T T) (S S)].        (2) 

When the fluid flows through a porous medium, the gross effect is represented by Darcy's law. As a result, the usual 

viscous term is replaced by the resistance term

1

,
k

 
  
 

V where k1 and V denote respectively the medium 

permeability and the filter velocity. 

Hence, the basic equations are 

                
0

0 i 0
1

D
1 1 [ p X ] 1 ,

t t t k t

        
                       

q
q  (3) 

                 . 0 q  (4) 

               ( . ) 0,
t


   


q  (5) 

              
2

T
T

( . )T k T,
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q  (6) 

and         
2

S
C

( . )C k C,
t


   


q  (7) 
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where q and

0

 
    

are respectively the velocity and kinematic viscosity of the fluid respectively, k1 is the 

intrinsic permeability of the medium and 1k  corresponds to non-porous medium. 

 

BASIC STATE AND THE PERTURBATION EQUATIONS 
The initial stationary state, whose stability we wish to examine is that of an incompressible, viscous, visco-elastic 

(Oldroydian) fluid arranged in a horizontal strata in a non-homogeneous and isotropic porous medium. The system is 

acted upon by a temperature T, concentration C and the gravity field g (0, 0, –g). 

The initial state whose stability we wish to examine is thus characterized by 

z

0 0 0 0
0

(0,0,0),T T z,C C z, [f(z) z z]and p p g dz.                q  (8) 

where p0 0. 

Following the usual procedure and normal mode technique given by 

                     x yF(z) exp.[i(k x k y) nt],    (9) 

where
2 2
x yk k k  is the real wave number of propagation and n is the frequency of arbitrary disturbance. 

We get 

          

2
2 2 2 2 2 2 2 22

1 1 1 1
1

R a
[1 FP ] [ (D a )(D a P )][ (D a ) P ]w [D a P ]

P


           



 

                    
2 2 2 2 2 2 2 2

1 1 1 1[ (D a ) P ]w R a [ (D a ) P ]w R a (D a P ) w            

                      
2 2 2 2

2 1 1 1P [1 F P ][D a P ][ (D a ) P ]w 0.            (10) 

where 

 

4

T

g d
R

k





is the thermal Rayleigh number, 1

T

P
k


 is the thermal Prandtl number, 

 

4

T

g d
R

k

  



is the concentration Rayleigh number, 

S

T

k

k
  is the Lewis number, 

 
T

2

k
F

d


 is the elastic parameter, 

4
2

2 2
T 1

df
gd

ddz
R ,P

k k

 
  

 


and 
0 .


 


 

Equation (10) can also be written as 

          
2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 1[1 FP ][ P (D a )(D a P )][ (D a ) P ]w R a [D a P ]             

               
2 2 2 2 2 2 2 2

1 1 1 1 1 1[ (D a ) P ]w P R a [ (D a ) P ]w P R a (D a P ) w            

                      
2 2 2 2

1 2 1 1 1P P [1 F P ][D a P ][ (D a ) P ]w 0.            (11) 

The solution of the equation (11) is to be obtained under the following boundary conditions : 

           w = D2 0 and z = 1. (12) 
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RESULTS AND DISCUSSION 
 

(A) Stationary Convection 

 

Hence for stationary convection, equation (11) becomes 

                                 R2a2 2 – a2)2w = 0. (13) 

Multiplying equation (13) by w* and integrating over the range of z, we have 

                                  

1
2 2 2 2

2
0

R a (D a ) ww *dz 0    

or                                

1
2 2 2 4 2 2

2
0

R a (| D w | a 2a | Dw | )dz 0     (14) 

In view of the boundary conditions (12) and following Chandrashekhar [3]

only possible solutions. Thus, we observe that the hypothesis that initial state solutions are perturbed is contradicted. 

Therefore, the instability can not set in as stationary convection, or in other words the Principle of Exchange of 

Stabilities (PES) is not valid for the problem under investigation. 

 

(B) Oscillatory Convection 

Now for the proper solution of equation (11) for w belonging to the lowest mode, we follow Chandrashekhar [3] and  

assume that solution w satisfying the boundary conditions is given by  w = w0  

Equation (12) yields 

           2 2 2 2 2 2 2 2 2 2
1 1 1 1 2 1[1 FP ] [ P (D a )(D a P )][ (D a ) P ]w R a [D a P ]             

               
2 2 2 2 2 2 2 2

1 1 1 1 1 1[ (D a ) P ]w P R a [ (D a ) P ]w P R a (D a P ) w            

                      
2 2 2 2 2 2

1 2 1 1 1P P [1 F P ](D a )[D a P ][ (D a ) P ]w 0.             (15) 

Let  
2 2 2 2 2 2

1 1 1I [D a ][D a P ][ (D a ) P ]w,      
 

2 2 2 2
2 1 1I [D a P ][ (D a ) P ]w,       

       

2 2
3 1I [ (D a ) P ]w   

      
and 

2 2
4 1I [D a P ]w.    

Substituting w = w0 1, I2, I3 and I4, we get 

  
2 2 2 2 2 2

1 1 1 0I [D a ][D a P ][ (D a ) P ]w sin z         

                            
2 2 2 2 2 2

1 1 0[ ( a ) P ][ a P ][ a ]w sin z             (16) 

  
2 2 2 2

2 1 1 0I [D a P ][ (D a ) P ]w sin z,        

                            
2 2 2 2

1 1 0[ ( a ) P ][ a P ]w sin z,          (17) 

            
2 2

3 1 0I [ (D a ) P ]w sin z      

                            
2 2

1[ ( a ) P ]       (18) 

and           
2 2

4 0 0 1 0I [D w sin z a w sin z P w sin z],       

                           
2 2

1 0[ a P ]w sin z       (19) 

Substituting for I1, I2, I3 and I4 from (16) to (19) into equation (15), we have 

2 2 2 2 2 2 2 2 2 2
1 1 1 1 2 1 1P [1 FP ][ a ][ a P ][ ( a ) P ] R a [1 FP ][ a P ]                 
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2 2 2 2 2 2 2 2

1 1 1 1 1 1 1[ ( a ) P ] P R a [ ( a ) P ][1 FP ] P R a [ a P ]                 

                
2 2 2 2 2 2

1 1 2 1 1 1[1 FP ] P P [1 F P ][ a ][ a P ][ ( a ) P ] 0.                  (20) 

Moreover, equation (20) can be rewritten as 

    

2 2 2 2
2 2 2 2 2 2 22 1

1 1 1 2 2
1 1

R a R a [ a P ]
[ a ][ a P ] [ a P ] R a

P [ ( a ) P ]

  
           

    
 

                          

2 2 2 2
2 1 1

1

P ( a )[ a P ][1 FP ]

[1 FP ]

      


 
  

          
3 4 1

1 1 1
1 1

R X R X[1 X P ]
[1 X][1 X P ] [1 X P ] R X

P [ (1 X) P ]

 
        

   
 

                                                           
2 1 1

1

P (1 X)[1 X P ][1 FP ]

[1 FP ]

    


 
 (21) 

where 

  

2
2

3 1 44 4 4 2

R R R a
R ,R ,R ,X ,


   
   

 and 1 2

F
F .


 

As discussed earlier, the Principle of Exchange of Stabilities being not valid for the present problem, the marginal 

i i i in equation (21), the equation at the marginal 

state is obtained as 

 
2 3

i i 1 i 1 1
i 1

R X
[1 X][(1 X)i P ] [i[1 X] P ] R X

P
        


 

                             

2 2 2
4 i 1 i 1 2

2 2 2 2 2 2 2
i 1 1 1 i

R X[ (1 X) P ] i P [1 X][1 ] P X[1 X]

[ [1 X] P ] [1 F P ]

         
 

    
 

2 2 2 2 2 2 2 2 2 2 3 3
1 1 i 1 1 i i 1 1 1 i 1 1 i[[1 X] [1 X]F P F P (1 ) i( P [1 X]F P (1 ) F P ]                   (22)  

The real part of equation (22) is given by 

    

2 2 22
2 4 i 1
i 1 3 2 2 2 2

i 1

R X[ (1 X) P ]
R [1 X] P R X

X [ [1 X] P ]

    
     

   

 

                 
2 2 2 2 2 22

1 1 i 1 1 i2 2 2
1 1 i

P [1 X]
[[1 X] [1 X]F P F P (1 )]

[1 F P ]


         

 
 (23) 

Also, the imaginary part of equation (22) is given by 

 
2 3 4 i 1

i 2 2 2 2
i i i 1

R X[1 X] R X P [1 X][1 ]
[1 X]

P [ [1 X] P ]

    
   

    
 

                 

2 3 3
2 i i 1 1 i 1 1 i

2 2 2
1 1 i

P [1 X][ P [1 X]F P (1 ) F P ]

[1 F P ]

         


 
 

This leads to the following sixth degree equation in i :  

                 
6 4 2
i i iA B C D 0,        (24) 
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where,  
3 2
1 1 1 2 1A (1 X)P F [(1 X)P P F ]      

  
2 3 4 2 3 2 2 4

1 1 1 3 1 1B (1 X) P (1 X) F P R X(1 X)F P        

                 
2 4 2 3 4

4 1 1 2 1 1R X[(1 X)(1 )F P (1 ) (1 X) P F P (1 ),           

  
2 4 3 2 2 2 2 2 2

1 3 1 1 1 4 1C (1 X) P R X(1 X) [P F P ] R P X(1 X)(1 )              

                    
2

2 1 1P P (1 X)[1 F (1 X)(1 )].       

And  D = R3X[1 + X]3 2. 

i is given by 

equation (24). 

We now discuss the existence of overstable marginal state under various situations. 

Case – 1 : The case when 

  (i) R3 > 0   
df

0
dz

 
   

 

  (ii) 1 –    S Tk k   

And  (iii)  

Observe that 

  (i)  

and  (ii) R3 > 

i for which 
2
i  is positive (see equation (24)). It follows that the overstability cannot occur at the marginal 

state. However, the situation contrary to our assumed conditions in this case, in general, does not automatically 

guarantee the occurrence of overstability. 

In fact, for R3  

 (i) 

may exist. 

 (ii) If R3 -elastic parameter F1  is so large that it 

makes either of B or C negative and satisfying the inequality 

      4[BD – C2 ][AC – B2] > [AD – BC]2. 

Thus, we see that the visco-elasticity has an effective role in instability criteria as there is a sufficient room for the 

existence of marginal state even if R3  

Case – 2 : When R3 < 0, one of the roots of equation (24) is always positive irrespective of the other parameters. 

Therefore the marginal state and overstability essentially occur. 

 

(C) Nature of Non-Oscillating Modes : 

For R3 > 0, kS > kT  non- i r 

r r and w = w0  

                      
5 4 3 2

0 r 1 r 2 r 3 r 4 r 5D D D D D D 0,            (25) 

where 

 
2 2 2

0 1D P ( a )F,    

 
3 2 2 2 2

1 1 1 2D P ( a )[ P F P 1 F( a )(1 )],            

 
3 2 2 2 2 2 2 2 3 2 2

2 1 1 1 2 2 1D FP a (R R R) ( a ) P [( a ) P F (1 )] P P ( a )],                  

 
2 2 2 2 2 2 2 2 2

3 1 1 1 2D FP a ( a )[R(1 ) R R ] P P ( a )[F ( a ) (1 )]                   
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2 2 3 2 2

1 1 1P ( a ) P a (R R R ),          

 
2 2 2 2 2 2 2 2

4 1 1 1 2D P a ( a )[R R R(1 )] P ( a )[a RF P ( a )]                 

and 
2 2 2

5D Ra ( a ).      

r with real coefficients and thus has five roots, which 

may be real. Since R3 5 in the characteristic equation being negative, hence has at 

least one positive real root and thus making the system unstable. Thus, we conclude that non-oscillatory modes are 

unstable in nature. 

 

VARIATIONAL PRINCIPLE 
A variational principle can be established for the present problem following Chandrashekhar [3]. 

Let one of the characteristic values be ni and let the corresponding solutions be denoted by a subscript “i”, then 

                               
2 0

0
1

(1 n)
k L n Dw

k (1 n)

   
    

  
 (26) 

and                         
0

0 0
1

[1 n]g df
DL nw w g g w,

n dz k [1 n]

    
               

 (27) 

 

From equation (26), we have, 

                              
0 i

i 0 i i i i i 0 i
i 1 i

[1 n ]g df
DL n w w g g w ,

n dz k [1 n ]

    
                

 (28) 

Also from equation (27) 

                            
2 0

i 0 i
1

(1 n)
k L n Dw

k (1 n)

   
    

  
 (29) 

Let nj be a characteristic value different from ni, and let subscript ‘j’ distinguishes the corresponding solutions. We 

multiply equations (28) and (29) respectively by wj and DWj and integrate them with respect to z from z = 0 and z = 

d using the boundary conditions 

                    
2w D w X Dz 0

0

   


    
 at z = 0 and z = d. (30) 

We have 

             

d d
0 i

i j i i j
i 1 i0 0

(1 n )g df
(DL )w dz n w w dz

n dz k (1 n )

   
          

 

                                        

d d

0 i j 0 i j
0 0

g w dz g w dz        (31) 

and            

d d
2 0 i

i j i i j
i i0 0

(1 n )
k L (Dw )dz n Dw Dw dz.

k (1 n )

  
     

  
 (32) 

Substituting the characteristic values nj, wj j i i respectively, integrating the 

same from z = 0 and z = d under the boundary conditions (30) and substituting the results in equation (31), we get 

               

d d
0 i

i j 0 i i j
i 1 i0 0

(1 n )g df
L (Dw )dz n w w dz

n dz k (1 n )
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d
2

0 T i j T i j j i j
0

g
[k D D k k n ]dz


         


 

                                      

d
2

0 S i j S i j j i j
0

g
[k D D k k n ]dz


         


 (33) 

Also integrating the L.H.S. of equation (32) by parts and using the boundary conditions (30), we get 

                       

d d
2 0 i

i j 0 i i j
1 i0 0

(1 n )
k L (Dw )dz n Dw Dw dz.

k (1 n )

  
      

  
 (34) 

Putting i = j and suppressing the subscript, equations (33) and (34) yield 

             

d d
2 2 2 20

2 2
10 0

(1 n)1 1
n w (Dw) dz (w (Dw) dz

(1 n) kk k

    
           

 

                      

2 2d d d
2 2 2 2T

0 0 0

g kg df g
w dz n dz [(D ) k ( ) ]dz

n dz

 
           

 

                                               

d d
2 2 2S

0 0

g kg
dz [(D ) k ( ) ]dz 0

  
      

  
 (35) 

Equation (35) provides a basis for the variational formulation of the problem as discussed below: 

Let 

d d
2 2 2 2

1 22 2
10 0

2d d
2

3 4
0 0

2d d
2 2 2T

5 6
0 0
d

2 2 2S
7

0

1 1
J w (Dw) dz, J w (Dw) dz,

kk k

df g
J w dz, J dz,

dz

g kg
J dz, J [(D ) k ( ) ]dz,

g k
and J [(D ) k ( ) ]dz,

   
        

    
 

       
 
     

  

   

 

 (36) 

With the help of equation (36), equation (35) can be written as 

            
0

1 2 3 4 5 6 7
(1 n) g

nJ J J (J J )n J J 0
(1 n) n

  
        

  
 

            
0

1 4 5 3 2 6 7
1 ng

n[J J J ] J J J J 0
n 1 n

  
          

 (37) 

n in 

respectively. 

the corresponding changes in
'

iJ s , denoted by 
'

iJ s.  We can analyse these changes with the help of equation which 

gives 
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      0 0
1 4 5 3 2 1 4 5 3 22 2

( ) 1 ng g
n J J J J J J J J J J

n 1 nn (1 n)

        
                        

 

                                                               6 7J J 0    (38) 

We, now use the expressions for
'

iJ s given by (36) to evaluate
'

iJ s.  Integrating by parts a suitable number of times 

and using (30), we find 

d d
2 2 2 2

1 22 2
0 0 1
d d

3 4
0 0
d d

2 2T
5 6

0 0
d

2 2S
7

0

1 1 1
J (D w )wdz, J (D k ) w dz,

2 2k k k

1 df 1 g
J (dw).wdz, J ( ) dz,

2 dz 2

g k1 g 1
J ( ) dz, J (D k ) dz,

2 2

g k1
and J (D k ) dz.

2


       


 

           


           
  


    

 

 (39) 

Combining equations (38) and (39) and using equations (30) to (37) in it and rearranging the terms, we get 

             

d
0

1 4 6 3 22 2
0

n g
J J J J J g (w w)dz

2 n (1 n)

   
          

   

 

                                                                

d

0

g (w w)dz 0      (40) 

Multiplying equation of magnetic field by  and integrating w.r.t. z from z = 0 to z = d, we get 

                        

d d d
2 2

T T
0 0 0

n dz [k k k (D ) ]dz w dz.            (41) 

and z = d, we get 

                        

d d d d
2 2 2

T T
0 0 0 0

n dz n dz [k k k D ]dz wdz.               (42) 

Subtracting equation (42) from equation (41) and integrating by parts, using boundary conditions (30), we get after 

some rearrangement of the terms 

                              

d

4
0

g [w w]dz nJ      (43) 

Proceeding similarly, we get 

                              

d

5
0

g [w w]dz nJ      (44) 

 Using equations (43) and (44) equation (40) reduces to 

                              
0

1 4 6 3 22 2

( )n g
J J J J J 0.

2 n (1 n)

   
      

   

 (45) 
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Now, it is evident from equation (37) that the quantity within [ ] on the L.H.S. of equation (45) can not vanish. 

 

Therefore, equation (35) provides a basis for the variational formulation of the problem under investigation. 

 

NUMERICAL COMPUTATIONS 
The effect of various parameters on the instability criteria is studied with the help of numerical computations using 

variational principle. 

0 0 sin lz and 

0 sin lz, where w0 0 0  

The substitution of the trial solution in equation (35) and its further simplification ultimately gives, in dimensionless 

 

             
5 4 3 2

0 1 2 3 4 5A A A A A A 0,           (46) 

where 

         
3 2

0 1A P F(1 y ),   

         
2 2 2 2 2 2 2

1 1 1 2 1 2 1 5 1A P (1 y )[1 P P F(1 y )(1 )] P (1 y )P P Fy (R R R p b )],              

         
4 2 3 2 2 2

3 1 2 1 1A (1 y ) z[1 P P F P Fy (1 )[R R Rb p (1 )]                

                                                        
2 2 2 2

1 2 1 5 1P P (1 y ) (1 ) P y (R R R b p )          

       
4 2 3 3 2 2 2 2 2 2 2

4 2 1A (1 y ) P Rb y P (1 y )( F(1 y ) (1 )] y (1 )(R R )                    

and 
5 2 2 2

5A Rb y (1 y ) .      

where the quantities have been non-dimensionalized as 

                

2
S

1
T

kk nd
y , b , , P , ,

l l k k

 
      


 

            

2 4 4 3

2 5 2
1 T T

d g d g d gd
P , R , R and R .

k k k

   
   

  
 

The roots of equation (46) have been located for different values of b, y, R, R´ and P2 by making use of numerical 

stabilizing effect on the system. 
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CONCLUSION 
An analysis of the problem and the discussions of the results lead to the conclusion that the Principle of Exchange of 

Stability is not valid for this problem  and the frequency of oscillations and the Rayleigh number in the marginal state 

are given by equation (23) and equation (24). 
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Further, we find for density distribution with positive gradient and for ks >kT, the overstable marginal state does not 

exist and we have only non-oscillatory modes which make the system unstable. For density distribution with negative 

gradient, the marginal state and overstabSe solution exist, irrespective of the values of other parameters. 
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